Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Cell Rep ; 42(6): 112630, 2023 May 30.
Article in English | MEDLINE | ID: covidwho-2327628

ABSTRACT

Although therapeutic B cell depletion dramatically resolves inflammation in many diseases in which antibodies appear not to play a central role, distinct extrafollicular pathogenic B cell subsets that accumulate in disease lesions have hitherto not been identified. The circulating immunoglobulin D (IgD)-CD27-CXCR5-CD11c+ DN2 B cell subset has been previously studied in some autoimmune diseases. A distinct IgD-CD27-CXCR5-CD11c- DN3 B cell subset accumulates in the blood both in IgG4-related disease, an autoimmune disease in which inflammation and fibrosis can be reversed by B cell depletion, and in severe COVID-19. These DN3 B cells prominently accumulate in the end organs of IgG4-related disease and in lung lesions in COVID-19, and double-negative B cells prominently cluster with CD4+ T cells in these lesions. Extrafollicular DN3 B cells may participate in tissue inflammation and fibrosis in autoimmune fibrotic diseases, as well as in COVID-19.

2.
Proc Natl Acad Sci U S A ; 119(41): e2209042119, 2022 10 11.
Article in English | MEDLINE | ID: covidwho-2288486

ABSTRACT

Viruses employ a variety of strategies to escape or counteract immune responses, including depletion of cell surface major histocompatibility complex class I (MHC-I), that would ordinarily present viral peptides to CD8+ cytotoxic T cells. As part of a screen to elucidate biological activities associated with individual severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) viral proteins, we found that ORF7a reduced cell surface MHC-I levels by approximately fivefold. Nevertheless, in cells infected with SARS-CoV-2, surface MHC-I levels were reduced even in the absence of ORF7a, suggesting additional mechanisms of MHC-I down-regulation. ORF7a proteins from a sample of sarbecoviruses varied in their ability to induce MHC-I down-regulation and, unlike SARS-CoV-2, the ORF7a protein from SARS-CoV lacked MHC-I downregulating activity. A single amino acid at position 59 (T/F) that is variable among sarbecovirus ORF7a proteins governed the difference in MHC-I downregulating activity. SARS-CoV-2 ORF7a physically associated with the MHC-I heavy chain and inhibited the presentation of expressed antigen to CD8+ T cells. Specifically, ORF7a prevented the assembly of the MHC-I peptide loading complex and caused retention of MHC-I in the endoplasmic reticulum. The differential ability of ORF7a proteins to function in this way might affect sarbecovirus dissemination and persistence in human populations, particularly those with infection- or vaccine-elicited immunity.


Subject(s)
Antigen Presentation , CD8-Positive T-Lymphocytes , COVID-19 , Histocompatibility Antigens Class I , Viral Proteins , Amino Acids , CD8-Positive T-Lymphocytes/immunology , COVID-19/immunology , Histocompatibility Antigens Class I/immunology , Humans , Major Histocompatibility Complex , Peptides , SARS-CoV-2 , Viral Proteins/immunology
3.
Clin Infect Dis ; 2022 Jun 23.
Article in English | MEDLINE | ID: covidwho-2228289

ABSTRACT

We enrolled seven individuals with recurrent symptoms or antigen test conversion following nirmatrelvir-ritonavir treatment. High viral loads (median 6.1 log10 copies/mL) were detected after rebound for a median of 17 days after initial diagnosis. Three had culturable virus for up to 16 days after initial diagnosis. No known resistance-associated mutations were identified.

4.
Cell Rep Med ; : 100834, 2022 Nov 15.
Article in English | MEDLINE | ID: covidwho-2120103

ABSTRACT

The emergence of the antigenically distinct and highly transmissible Omicron variant highlights the possibility of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune escape due to viral evolution. This continued evolution, along with the possible introduction of new sarbecoviruses from zoonotic reservoirs, may evade host immunity elicited by current SARS-CoV-2 vaccines. Identifying cross-reactive antibodies and defining their epitope(s) can provide templates for rational immunogen design strategies for next-generation vaccines. Here, we characterize the receptor-binding-domain-directed, cross-reactive humoral repertoire across 10 human vaccinated donors. We identify cross-reactive antibodies from diverse gene rearrangements targeting two conserved receptor-binding domain epitopes. An engineered immunogen enriches antibody responses to one of these conserved epitopes in mice with pre-existing SARS-CoV-2 immunity; elicited responses neutralize SARS-CoV-2, variants, and related sarbecoviruses. These data show how immune focusing to a conserved epitope targeted by human cross-reactive antibodies may guide pan-sarbecovirus vaccine development, providing a template for identifying such epitopes and translating to immunogen design.

5.
JCI Insight ; 7(19)2022 10 10.
Article in English | MEDLINE | ID: covidwho-2064378

ABSTRACT

Protective immunity against SARS-CoV-2 infection after COVID-19 vaccination may differ by variant. We enrolled vaccinated (n = 39) and unvaccinated (n = 11) individuals with acute, symptomatic SARS-CoV-2 Delta or Omicron infection and performed SARS-CoV-2 viral load quantification, whole-genome sequencing, and variant-specific antibody characterization at the time of acute illness and convalescence. Viral load at the time of infection was inversely correlated with antibody binding and neutralizing antibody responses. Across all variants tested, convalescent neutralization titers in unvaccinated individuals were markedly lower than in vaccinated individuals. Increases in antibody titers and neutralizing activity occurred at convalescence in a variant-specific manner. For example, among individuals infected with the Delta variant, neutralizing antibody responses were weakest against BA.2, whereas infection with Omicron BA.1 variant generated a broader response against all tested variants, including BA.2.


Subject(s)
AIDS Vaccines , COVID-19 , Influenza Vaccines , Papillomavirus Vaccines , Respiratory Syncytial Virus Vaccines , SAIDS Vaccines , Antibodies, Neutralizing , Antibodies, Viral , BCG Vaccine , COVID-19/prevention & control , COVID-19 Vaccines , Convalescence , Diphtheria-Tetanus-Pertussis Vaccine , Humans , Measles-Mumps-Rubella Vaccine , Neutralization Tests , SARS-CoV-2
6.
Cell Rep Med ; 3(7): 100678, 2022 07 19.
Article in English | MEDLINE | ID: covidwho-2042205

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) monoclonal antibodies (mAbs) are among the treatments recommended for high-risk ambulatory persons with coronavirus 2019 (COVID-19). Here, we study viral culture dynamics post-treatment in a subset of participants receiving the mAb bamlanivimab in the ACTIV-2 trial (ClinicalTrials.gov: NCT04518410). Viral load by qPCR and viral culture are performed from anterior nasal swabs collected on study days 0 (day of treatment), 1, 2, 3, and 7. Treatment with mAbs results in rapid clearance of culturable virus. One day after treatment, 0 of 28 (0%) participants receiving mAbs and 16 of 39 (41%) receiving placebo still have culturable virus (p < 0.0001). Recrudescence of culturable virus is detected in three participants with emerging mAb resistance and viral RNA rebound. While further studies are necessary to fully define the relationship between shed culturable virus and transmission, these results raise the possibility that mAbs may offer immediate (household) and public-health benefits by reducing onward transmission.


Subject(s)
COVID-19 Drug Treatment , Antibodies, Monoclonal/therapeutic use , Antibodies, Monoclonal, Humanized , Antibodies, Neutralizing , Humans , SARS-CoV-2
7.
ACS Appl Mater Interfaces ; 14(37): 42483-42493, 2022 Sep 21.
Article in English | MEDLINE | ID: covidwho-2016531

ABSTRACT

Microbial adhesion and contamination on shared surfaces can lead to life-threatening infections with serious impacts on public health, economy, and clinical practices. The traditional use of chemical disinfectants for sanitization of surfaces, however, comes with its share of health risks, such as hazardous effects on the eyes, skin, and respiratory tract, carcinogenicity, as well as environmental toxicity. To address this, we have developed a nonleaching quaternary small molecule (QSM)-based sprayable coating which can be fabricated on a wide range of surfaces such as nylon, polyethylene, surgical mask, paper, acrylate, and rubber in a one-step, photocuring technique. This contact-active coating killed pathogenic bacteria and fungi including drug-resistant strains of Staphylococcus aureus and Candida albicans within 15-30 min of contact. QSM coatings withstood multiple washes, highlighting their durability. Interestingly, the coated surfaces exhibited rapid killing of pathogens, leading to the prevention of their transmission upon contact. The coating showed membrane disruption of bacterial cells in fluorescence and electron microscopic investigations. Along with bacteria and fungi, QSM-coated surfaces also showed the complete killing of high loads of influenza (H1N1) and SARS-CoV-2 viruses within 30 min of exposure. To our knowledge, this is the first report of a coating for multipurpose materials applied in high-touch public places, hospital equipment, and clinical consumables, rapidly killing drug-resistant bacteria, fungi, influenza virus, and SARS-CoV-2.


Subject(s)
Anti-Infective Agents , COVID-19 , Disinfectants , Influenza A Virus, H1N1 Subtype , Influenza, Human , Acrylates/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/pharmacology , Bacteria , COVID-19/prevention & control , Disinfectants/pharmacology , Fungi , Humans , Nylons/pharmacology , Polyethylenes/pharmacology , Rubber , SARS-CoV-2
8.
Nature ; 606(7914): 576-584, 2022 06.
Article in English | MEDLINE | ID: covidwho-1921629

ABSTRACT

SARS-CoV-2 can cause acute respiratory distress and death in some patients1. Although severe COVID-19 is linked to substantial inflammation, how SARS-CoV-2 triggers inflammation is not clear2. Monocytes and macrophages are sentinel cells that sense invasive infection to form inflammasomes that activate caspase-1 and gasdermin D, leading to inflammatory death (pyroptosis) and the release of potent inflammatory mediators3. Here we show that about 6% of blood monocytes of patients with COVID-19 are infected with SARS-CoV-2. Monocyte infection depends on the uptake of antibody-opsonized virus by Fcγ receptors. The plasma of vaccine recipients does not promote antibody-dependent monocyte infection. SARS-CoV-2 begins to replicate in monocytes, but infection is aborted, and infectious virus is not detected in the supernatants of cultures of infected monocytes. Instead, infected cells undergo pyroptosis mediated by activation of NLRP3 and AIM2 inflammasomes, caspase-1 and gasdermin D. Moreover, tissue-resident macrophages, but not infected epithelial and endothelial cells, from lung autopsies from patients with COVID-19 have activated inflammasomes. Taken together, these findings suggest that antibody-mediated SARS-CoV-2 uptake by monocytes and macrophages triggers inflammatory cell death that aborts the production of infectious virus but causes systemic inflammation that contributes to COVID-19 pathogenesis.


Subject(s)
COVID-19 , Inflammation , Monocytes , Receptors, IgG , SARS-CoV-2 , COVID-19/virology , Caspase 1/metabolism , DNA-Binding Proteins , Humans , Inflammasomes/metabolism , Inflammation/metabolism , Inflammation/virology , Monocytes/metabolism , Monocytes/virology , NLR Family, Pyrin Domain-Containing 3 Protein , Phosphate-Binding Proteins , Pore Forming Cytotoxic Proteins , Receptors, IgG/metabolism
10.
Clin Immunol ; 237: 108991, 2022 04.
Article in English | MEDLINE | ID: covidwho-1866980

ABSTRACT

Many studies have been performed in severe COVID-19 on immune cells in the circulation and on cells obtained by bronchoalveolar lavage. Most studies have tended to provide relative information rather than a quantitative view, and it is a combination of approaches by various groups that is helping the field build a picture of the mechanisms that drive severe lung disease. Approaches employed to date have not revealed information on lung parenchymal T cell subsets in severe COVID-19. Therefore, we sought to examine early and late T cell subset alterations in the lungs and draining lymph nodes in severe COVID-19 using a rapid autopsy protocol and quantitative imaging approaches. Here, we have established that cytotoxic CD4+ T cells (CD4 + CTLs) increase in the lungs, draining lymph nodes and blood as COVID-19 progresses. CD4 + CTLs are prominently expanded in the lung parenchyma in severe COVID-19. In contrast CD8+ T cells are not prominent, exhibit increased PD-1 expression, and no obvious increase is seen in the number of Granzyme B+ CD8+ T cells in the lung parenchyma in severe COVID-19. Based on quantitative evidence for re-activation in the lung milieu, CD4 + CTLs may be as likely to drive viral clearance as CD8+ T cells and may also be contributors to lung inflammation and eventually to fibrosis in severe COVID-19.


Subject(s)
CD4-Positive T-Lymphocytes , COVID-19 , CD8-Positive T-Lymphocytes , Humans , Lung , T-Lymphocyte Subsets , T-Lymphocytes, Cytotoxic
11.
Open Forum Infect Dis ; 9(3): ofac022, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1758826

ABSTRACT

We assessed the ability of the BinaxNow rapid test to detect severe acute respiratory syndrome coronavirus 2 antigen from 4 individuals with Omicron and Delta infections. We performed serial dilutions of nasal swab samples, and specimens with concentrations of ≥100 000 copies/swab were positive, demonstrating that the BinaxNow test is able to detect the Omicron variant.

12.
JCI Insight ; 7(2)2022 01 25.
Article in English | MEDLINE | ID: covidwho-1649048

ABSTRACT

Isolation guidelines for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are largely derived from data collected prior to the emergence of the delta variant. We followed a cohort of ambulatory patients with postvaccination breakthrough SARS-CoV-2 infections with longitudinal collection of nasal swabs for SARS-CoV-2 viral load quantification, whole-genome sequencing, and viral culture. All delta variant infections in our cohort were symptomatic, compared with 64% of non-delta variant infections. Symptomatic delta variant breakthrough infections were characterized by higher initial viral load, longer duration of virologic shedding by PCR, greater likelihood of replication-competent virus at early stages of infection, and longer duration of culturable virus compared with non-delta variants. The duration of time since vaccination was also correlated with both duration of PCR positivity and duration of detection of replication-competent virus. Nonetheless, no individuals with symptomatic delta variant infections had replication-competent virus by day 10 after symptom onset or 24 hours after resolution of symptoms. These data support US CDC isolation guidelines as of November 2021, which recommend isolation for 10 days or until symptom resolution and reinforce the importance of prompt testing and isolation among symptomatic individuals with delta breakthrough infections. Additional data are needed to evaluate these relationships among asymptomatic and more severe delta variant breakthrough infections.


Subject(s)
COVID-19 Vaccines/administration & dosage , COVID-19/genetics , COVID-19/metabolism , SARS-CoV-2/physiology , Virus Replication , Virus Shedding/physiology , Adult , COVID-19/prevention & control , Female , Humans , Male , Middle Aged , Time Factors
13.
J Infect Dis ; 224(11): 1821-1829, 2021 12 01.
Article in English | MEDLINE | ID: covidwho-1545975

ABSTRACT

BACKGROUND: Data on pediatric coronavirus disease 2019 (COVID-19) has lagged behind adults throughout the pandemic. An understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) viral dynamics in children would enable data-driven public health guidance. METHODS: Respiratory swabs were collected from children with COVID-19. Viral load was quantified by reverse-transcription polymerase chain reaction (RT-PCR); viral culture was assessed by direct observation of cytopathic effects and semiquantitative viral titers. Correlations with age, symptom duration, and disease severity were analyzed. SARS-CoV-2 whole genome sequences were compared with contemporaneous sequences. RESULTS: One hundred ten children with COVID-19 (median age, 10 years [range, 2 weeks-21 years]) were included in this study. Age did not impact SARS-CoV-2 viral load. Children were most infectious within the first 5 days of illness, and severe disease did not correlate with increased viral loads. Pediatric SARS-CoV-2 sequences were representative of those in the community and novel variants were identified. CONCLUSIONS: Symptomatic and asymptomatic children can carry high quantities of live, replicating SARS-CoV-2, creating a potential reservoir for transmission and evolution of genetic variants. As guidance around social distancing and masking evolves following vaccine uptake in older populations, a clear understanding of SARS-CoV-2 infection dynamics in children is critical for rational development of public health policies and vaccination strategies to mitigate the impact of COVID-19.


Subject(s)
COVID-19 , Viral Load , Adolescent , COVID-19/diagnosis , COVID-19/pathology , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Pandemics , SARS-CoV-2/genetics , Young Adult
15.
Clin Infect Dis ; 74(7): 1275-1278, 2022 04 09.
Article in English | MEDLINE | ID: covidwho-1345718

ABSTRACT

The impact of coronavirus disease 2019 vaccination on viral characteristics of breakthrough infections is unknown. In this prospective cohort study, incidence of severe acute respiratory syndrome coronavirus 2 infection decreased following vaccination. Although asymptomatic positive tests were observed following vaccination, the higher cycle thresholds, repeat negative tests, and inability to culture virus raise questions about their clinical significance.


Subject(s)
COVID-19 , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Health Personnel , Humans , Incidence , Prospective Studies , SARS-CoV-2 , Vaccination
16.
Cell ; 183(1): 143-157.e13, 2020 10 01.
Article in English | MEDLINE | ID: covidwho-720447

ABSTRACT

Humoral responses in coronavirus disease 2019 (COVID-19) are often of limited durability, as seen with other human coronavirus epidemics. To address the underlying etiology, we examined post mortem thoracic lymph nodes and spleens in acute SARS-CoV-2 infection and observed the absence of germinal centers and a striking reduction in Bcl-6+ germinal center B cells but preservation of AID+ B cells. Absence of germinal centers correlated with an early specific block in Bcl-6+ TFH cell differentiation together with an increase in T-bet+ TH1 cells and aberrant extra-follicular TNF-α accumulation. Parallel peripheral blood studies revealed loss of transitional and follicular B cells in severe disease and accumulation of SARS-CoV-2-specific "disease-related" B cell populations. These data identify defective Bcl-6+ TFH cell generation and dysregulated humoral immune induction early in COVID-19 disease, providing a mechanistic explanation for the limited durability of antibody responses in coronavirus infections, and suggest that achieving herd immunity through natural infection may be difficult.


Subject(s)
Coronavirus Infections/immunology , Germinal Center/immunology , Pneumonia, Viral/immunology , T-Lymphocytes, Helper-Inducer/immunology , Aged , Aged, 80 and over , B-Lymphocytes/immunology , COVID-19 , Female , Germinal Center/pathology , Humans , Male , Middle Aged , Pandemics , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Spleen/immunology , Spleen/pathology , Tumor Necrosis Factor-alpha/metabolism
17.
SSRN ; : 3652322, 2020 Jul 16.
Article in English | MEDLINE | ID: covidwho-693389

ABSTRACT

Humoral responses in COVID-19 disease are often of limited durability, as seen with other human coronavirus epidemics. To address the underlying etiology, we examined postmortem thoracic lymph nodes and spleens in acute SARS-CoV-2 infection and observed the absence of germinal centers, a striking reduction in Bcl-6+ germinal center B cells but preservation of AID+ B cells. Absence of germinal centers correlated with an early specific block in Bcl-6+TFH cell differentiation together with an increase in T-bet+TH1 cells and aberrant extra-follicular TNF-a accumulation.  Parallel peripheral blood studies revealed loss of transitional and follicular B cells in severe disease and accumulation of SARS-CoV-2-specific "disease-related" B cell populations. These data identify defective Bcl-6+TFH cell generation and dysregulated humoral immune induction early in COVID-19 disease, providing a mechanistic explanation for the limited durability of antibody responses in coronavirus infections and suggest that achieving herd immunity through natural infection may be difficult. Funding: This work was supported by NIH U19 AI110495 to SP, NIH R01 AI146779 to AGS, NIH R01AI137057 and DP2DA042422 to DL, BMH was supported by NIGMS T32 GM007753, TMC was supported by T32 AI007245. Funding for these studies from the Massachusetts Consortium of Pathogen Readiness, the Mark and Lisa Schwartz Foundation and Enid Schwartz is also acknowledged. Conflict of Interest: None. Ethical Approval: This study was performed with the approval of the Institutional Review Boards at the Massachusetts General Hospital and the Brigham and Women's Hospital.

SELECTION OF CITATIONS
SEARCH DETAIL